In-plane polarization induced by the hydrogen bonding and p-p Stacking of functionalized PDI supramolecules for the efficient photocatalytic degradation of organic pollutants

Publisher:
ROYAL SOC CHEMISTRY
Publication Type:
Journal Article
Citation:
Materials Chemistry Frontiers, 2020, 4, (9), pp. 2673-2687
Issue Date:
2020-09-01
Filename Description Size
d0qm00349b.pdfPublished version9.03 MB
Adobe PDF
Full metadata record
© the Partner Organisations. This work demonstrates the design of an in-plane polarized electric field induced by the hydrogen bonding and p-p stacking of amide-functionalized PDI supramolecules (sAmi-PDI), which are synthesized via a simple method in an acid medium. Acid-driven self-assembly is achieved via changing the local electrostatic interactions during intermolecular sAmi-PDI contact. A process that appropriately directs and accelerates the in-plane polarized electric field could improve the photoelectric separation efficiency. Moreover, p-p stacking and hydrogen-bond networks construct bridges for the molecule-molecule transfer of photogenerated electron-hole pairs, providing powerful assistance to enhance in-plane polarization. Meanwhile, the functionalized PDI molecules contain a large number of electron donors and acceptors in an acid medium; this is beneficial for improving the degree of self-assembly and providing a driving force for the efficient migration and separation of electron-hole pairs. Benefiting from the above-mentioned in-plane polarization and bridging role of electron-hole pairs, the photocatalytic performance of sAmi-PDI was dramatically enhanced almost 2-fold during the photodegradation of typical organic pollutants. Our results suggest that the enhanced photocatalytic activity could be attributed to fast carrier separation and migration caused by the in-plane polarized electric field, originating from hydrogen-bond networks and p-p stacking structures. This finding could provide a brand-new strategy for guiding the synthesis of PDI supramolecules with in-plane polarization, and could contribute to the construction of green, economical, and sustainable supramolecular materials. This journal is
Please use this identifier to cite or link to this item: