Synergistic Effects of Polypropylene and Glass Fiber on Mechanical Properties and Durability of Recycled Aggregate Concrete

Publisher:
SPRINGER
Publication Type:
Journal Article
Citation:
International Journal of Concrete Structures and Materials, 2020, 14, (1)
Issue Date:
2020-12-01
Full metadata record
© 2020, The Author(s). To better understand the synergistic effects of combined fibers on mechanical properties and durability of recycled aggregate concrete (RAC), different types of fibers with various lengths and mass ratios were adopted in this study. Experimental investigations were conducted to study the 28-day compressive strength and strength loss after exposed to salt-solution freeze–thaw cycles and the coupled action of mechanical loading and salt-solution freeze–thaw cycles. The microstructure was also characterized to evaluate the mechanism of this synergistic effect. To determine the effectiveness of the combined fibers on improving the mechanical properties and durability of RAC, the synergistic coefficient was proposed and applied for various combinations of fibers. The results indicate that the incorporation of fibers slightly decreased the 28-day compressive strength of RAC, but combining different sizes and types of fibers can mitigate this negative effect. Moreover, the incorporation of fibers greatly improves the freeze–thaw resistance of RAC. The combining different fibers exhibited a synergistic effect on the enhancement in properties of RAC, which could not be predicted with only one simplistic rule of fibre mixtures. In addition, microstructural characterization shows that the bonding strength of the interfacial transition zone (ITZ) between the fiber and cement matrix is mainly determined by the chemical bonding force which is due to the hydration reaction between fiber surface and cement matrix.
Please use this identifier to cite or link to this item: