Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage.

Publisher:
Elsevier BV
Publication Type:
Journal Article
Citation:
Chemosphere, 2020, 260
Issue Date:
2020-12
Filename Description Size
1-s2.0-S0045653520317227-main.pdf1.77 MB
Adobe PDF
Full metadata record
Acid mine drainage (AMD) which involves high sulfur and heavy metals concentrations and furthermore are acidic in character, has been a major environmental and economic issue due to the associated toxicity and treatment costs. A large quantity of AMD in nature has a variety of resources including water and heavy metals such as Cu, Al, Fe and Ni. In this study, the valuable resource of Cu was selectively recovered from model AMD solution through membrane distillation and adsorption systems. Direct contact membrane distillation (DCMD) system enabled to concentrate the Cu concentration in AMD by more than 2.5 times while recovering 80% of high-quality water for reuse purposes. For adsorption, mesoporous silica material was used after multi-modification with Mn and amine grafting to enhance the adsorption capacity as well as selectivity for Cu. Under acidic conditions, heavy metals cannot be adsorbed on amine grafted SBA-15. Therefore, the pH of synthetic AMD (pH = 2.2) had to be adjusted to the 5.0-5.2 range, in order to enable adsorption of Cu on modified SBA-15 (this is to prevent protonation of amine groups grafted on prepared SBA-15). Moreover, an increase in pH helped to precipitate more than 99% of Fe and Al (predominant metals in AMD). Cu adsorption on modified SBA-15 was 24.53 mg/g for KOH-treated AMD. However, Cu adsorption on modified SBA-15 decreased by 26% (18.11 mg/g) for NaOH-treated AMD. Cu adsorption with modified SBA-15 significantly improved to 55.75 mg/g when the Cu concentration was concentrated by DCMD.
Please use this identifier to cite or link to this item: