Big data analytics and network calculus enabling intelligent management of autonomous vehicles in a smart city
- Publisher:
- Institute of Electrical and Electronics Engineers (IEEE)
- Publication Type:
- Journal Article
- Citation:
- IEEE Internet of Things Journal, 2019, 6, (2), pp. 2021-2034
- Issue Date:
- 2019-04-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
Big Data Analytics and Network Calculus Enabling Intelligent Management of Autonomous Vehicles in a Smart City.pdf | Published version | 2.8 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Artificial intelligence (AI) and big data analytics enable autonomous vehicles (AVs) to dramatically change future intelligent transportation in smart cities. AVs are envisaged to evolve to a service rather than a product in the future. To provide best user experience of such services, three primary factors, namely, waiting time, travel time, and supply of AV services, are taken into consideration in a multiobjective optimization. Conventional optimization of services relies on traffic flow analysis over a queuing network model. However, due to the mobility of vehicles and the transfer uncertainty of road networks, the queuing network analysis is too complicated and practically intractable. For accuracy and convenient processing, network calculus (NC) is extended to model the queueing problem in this paper. The optimal number of available AVs can be identified by guaranteeing the waiting time of customers. The satisfaction of AV services can be viewed as a supply and demand problem, and optimized by bipartite graph matching. In order to reduce the average travel time, especially for rush hours with heavy traffic, we further propose a new online AVs fleet management scheme with congestion control for smart cities. It is shown that the intelligent management of AV fleet can be efficiently achieved, outperforming the cases of traditional vehicles. NC-assisted AI enables an efficient intelligent transportation paradigm in smart cities, while achieving substantial energy saving.
Please use this identifier to cite or link to this item: