A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks.

Publisher:
ELSEVIER
Publication Type:
Journal Article
Citation:
The Science of the total environment, 2020, 743, pp. 140630
Issue Date:
2020-11
Full metadata record
An effective pretreatment is the first step to enhance the digestibility of lignocellulosic biomass - a source of renewable, eco-friendly and energy-dense materials - for biofuel and biochemical productions. This review aims to provide a comprehensive assessment on the advantages and disadvantages of lignocellulosic pretreatment techniques, which have been studied at the lab-, pilot- and full-scale levels. Biological pretreatment is environmentally friendly but time consuming (i.e. 15-40 days). Chemical pretreatment is effective in breaking down lignocellulose and increasing sugar yield (e.g. 4 to 10-fold improvement) but entails chemical cost and expensive reactors. Whereas the combination of physical and chemical (i.e. physicochemical) pretreatment is energy intensive (e.g. energy production can only compensate 80% of the input energy) despite offering good process efficiency (i.e. > 100% increase in product yield). Demonstrations of pretreatment techniques (e.g. acid, alkaline, and hydrothermal) in pilot-scale have reported 50-80% hemicellulose solubilisation and enhanced sugar yields. The feasibility of these pilot and full-scale plants has been supported by government subsidies to encourage biofuel consumption (e.g. tax credits and mandates). Due to the variability in their mechanisms and characteristics, no superior pretreatment has been identified. The main challenge lies in the capability to achieve a positive energy balance and great economic viability with minimal environmental impacts i.e. the energy or product output significantly surpasses the energy and monetary input. Enhancement of the current pretreatment techno-economic efficiency (e.g. higher product yield, chemical recycling, and by-products conversion to increase environmental sustainability) and the integration of pretreatment methods to effectively treat a range of biomass will be the steppingstone for commercial lignocellulosic biorefineries.
Please use this identifier to cite or link to this item: