Single image deraining using Context Aggregation Recurrent Network
- Publisher:
- Elsevier BV
- Publication Type:
- Journal Article
- Citation:
- Journal of Visual Communication and Image Representation, 2021, 75, pp. 103039-103039
- Issue Date:
- 2021-02
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Single image deraining is a challenging problem due to the presence of non-uniform rain densities and the ill-posedness of the problem. Moreover, over-/under-deraining can directly impact the performance of vision systems. To address these issues, we propose an end-to-end Context Aggregation Recurrent Network, called CARNet, to remove rain streaks from single images. In this paper, we assume that a rainy image is the linear combination of a clean background image with rain streaks and propose to take advantage of the context information and feature reuse to learn the rain streaks. In our proposed network, we first use the dilation technique to effectively aggregate context information without sacrificing the spatial resolution, and then leverage a gated subnetwork to fuse the intermediate features from different levels. To better learn and reuse rain streaks, we integrate a LSTM module to connect different recurrences for passing the information learned from the previous stages about the rain streaks to the following stage. Finally, to further refine the coarsely derained image, we introduce a refinement module to better preserve image details. As for the loss function, the L1-norm perceptual loss and SSIM loss are adopted to reduce the gridding artifacts caused by the dilated convolution. Experiments conducted on synthetic and real rainy images show that our CARNet achieves superior deraining performance both qualitatively and quantitatively over the state-of-the-art approaches.
Please use this identifier to cite or link to this item: