Hybrid particle swarm optimization with wavelet mutation and its industrial applications

Publisher:
IEEE-Inst Electrical Electronics Engineers Inc
Publication Type:
Journal Article
Citation:
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38 (3), pp. 743 - 763
Issue Date:
2008-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010004228.pdf1.9 MB
Adobe PDF
A new hybrid particle swarm optimization (PSO) that incorporates a wavelet-theory-based mutation operation is proposed. It applies the wavelet theory to enhance the PSO in exploring the solution space more effectively for a better solution. A suite or benchmark test functions and three industrial applications (solving the load flow problems, modeling the development of fluid dispensing for electronic packaging, and designing a neural-network-based controller) are employed to evaluate the performance and the applicability of the proposed method. Experimental results empirically show that the proposed method significantly outperforms the existing methods in terms of convergence speed, solution quality, and solution stability.
Please use this identifier to cite or link to this item: