Sample efficient identity testing and independence testing of quantum states

Publication Type:
Conference Proceeding
Citation:
Leibniz International Proceedings in Informatics, LIPIcs, 2021, 185
Issue Date:
2021-02-01
Full metadata record
In this paper, we study the quantum identity testing problem, i.e., testing whether two given quantum states are identical, and quantum independence testing problem, i.e., testing whether a given multipartite quantum state is in tensor product form. For the quantum identity testing problem of D(Cd) system, we provide a deterministic measurement scheme that uses O(dε22) copies via independent measurements with d being the dimension of the state and ε being the additive error. For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm) system, we show that the sample complexity is Θ(~ Πmi=1ε2di) via collective measurements, and O(Πmi=1ε2d2i) via independent measurements. If randomized choice of independent measurements are allowed, the sample complexity is Θ(d3ε2/2) for the quantum identity testing problem, and Θ(~ Πmi=1ε2d3 i/2) for the quantum independence testing problem.
Please use this identifier to cite or link to this item: