Entirety of Quantum Uncertainty and Its Experimental Verification

IOP Publishing
Publication Type:
Journal Article
Chinese Physics Letters, 2021, 38, (7), pp. 070303
Issue Date:
Full metadata record
As a foundation of quantum physics, uncertainty relations describe ultimate limit for the measurement uncertainty of incompatible observables. Traditionally, uncertainty relations are formulated by mathematical bounds for a specific state. Here we present a method for geometrically characterizing uncertainty relations as an entire area of variances of the observables, ranging over all possible input states. We find that for the pair of position and momentum operators, Heisenberg's uncertainty principle points exactly to the attainable area of the variances of position and momentum. Moreover, for finite-dimensional systems, we prove that the corresponding area is necessarily semialgebraic; in other words, this set can be represented via finite polynomial equations and inequalities, or any finite union of such sets. In particular, we give the analytical characterization of the areas of variances of (a) a pair of one-qubit observables and (b) a pair of projective observables for arbitrary dimension, and give the first experimental observation of such areas in a photonic system.
Please use this identifier to cite or link to this item: