Cooperative Three-Dimensional Position Mapping Based on Received Signal Strength Measurements: Algorithm Design and Field Test

Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Journal Article
Citation:
IEEE Transactions on Vehicular Technology, 2021, 70, (10), pp. 10541-10552
Issue Date:
2021-10-01
Full metadata record
This paper presents a new approach to accurately and efficiently identifying a large number of wireless devices blindly installed to known three-dimensional installation/fitting points, based on received signal strengths (RSSs) between the devices. The approach is non-trivial because of the factorial, mapping nature of the considered problem, the multiplicative ranging errors of the RSS measurements (with standard deviation of 5-7 dB), and the requirement of high mapping accuracy in many internet-of-things (IoT) applications, e.g., industrial IoT and aircraft. The consideration of a structured environment where the set of candidate node positions is known beforehand shifts the problem of interest from a pure position estimation problem to a position assignment problem. The key idea of the proposed approach is that we interpret the position mapping problem with a probabilistic graphical model, where the factorial nature of mapping (more specifically, the mutual exclusiveness of devices at every installation point) is fully captured. A max-product belief propagation is designed against the probabilistic graph, to estimate the max-marginal position distribution of each device. The Kuhn-Munkres algorithm is applied to preserve the mutual exclusiveness of devices throughout the belief propagation and to decide device locations based on the estimated position distributions. Large-scale simulations and field tests are carried out, showing that the new approach achieves close-to-100% accuracy in simulations with hundreds of blindfolded devices under RSS measurement errors with standard deviation of 5-7 dB. Our approach also achieves 100% accuracy in all field trials with 76 devices inside the cabin of a Fokker 100 airplane, dramatically outperforming baseline techniques.
Please use this identifier to cite or link to this item: