Hvdc breaker power loss reduction by bridge-type hybrid breakers

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Energies, 2021, 14, (6)
Issue Date:
2021-03-02
Full metadata record
Several types of high voltage direct current (HVDC) breakers have been introduced and commercialized. Each of them has advantages and disadvantages. Among them, the hybrid HVDC breaker is highly successful. One of the most important concerns that the hybrid HVDC breaker has faced is high power loss throughout its fault current breaking process. The hybrid HVDC breaker comprises a high voltage bidirectional main HVDC breaker. A significant number of electronic switches need to be connected in a series where anti-parallel diodes are essentially embraced. During fault inception, a number of series solid-state switches and a number of series diodes dramatically increase the power loss of the main breaker. This study, firstly, studies the power loss of the hybrid HVDC breaker and later develops a structure of a full-bridge hybrid breaker (FBHB) to reduce the losses of the current structure both in the normal and fault protection states. In this paper simulations are done based on PSCAD. In addition to the analytical study and simulations, we show that the developed structure substantially decreases the amount of power lost during the normal operation and fault current breaking stage.
Please use this identifier to cite or link to this item: