Knowledge graph enhanced neural collaborative recommendation

Elsevier BV
Publication Type:
Journal Article
Expert Systems with Applications, 2021, 164, pp. 113992
Issue Date:
Filename Description Size
1-s2.0-S0957417420307685-main.pdfPublished version4.91 MB
Adobe PDF
Full metadata record
Existing neural collaborative filtering (NCF) recommendation methods suffer from severe sparsity problem. Knowledge Graph (KG), which commonly consists of fruitful connected facts about items, presents an unprecedented opportunity to alleviate the sparsity problem. However, pure NCF models can hardly model the high-order connectivity in KG, and ignores complex pairwise correlations between user/item embedding dimensions. To address these problems, we propose a novel Knowledge graph enhanced Neural Collaborative Recommendation (K-NCR) framework, which effectively combines user–item interaction information and auxiliary knowledge information for recommendation task into three parts: (1) For items, the proposed propagating model learns the representation of item entity. It recursively aggregates information from its multi-hop neighbours in KG, and employs an attention mechanism to discriminate the importance of the relation type to mine users’ potential preferences. (2) For users, another heterogeneous attention weights are leveraged to strengthen the embedding learning of users. (3) The user and item embeddings are then fed into a newly designed two-dimensional interaction map with convolutional hidden layers to model the complex pairwise correlations between their embedding dimensions explicitly. Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our K-NCR framework.
Please use this identifier to cite or link to this item: