Synergistic interaction and biochar improvement over co-torrefaction of intermediate waste epoxy resins and fir

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Environmental Technology and Innovation, 2021, 21, pp. 1-18
Issue Date:
2021-02-01
Full metadata record
This study investigated the synergistic effect of co-torrefaction with intermediate waste epoxy resins and fir in a batch-type reactor towards biochar improvement. The synergistic effect ratio was used to judge the interaction between the two materials assisted by statistical tools. The main interaction between the feedstocks was the catalytic reaction and blocking effect. Sodium presented in the intermediate waste had a pronounced catalytic effect on the liquid products during torrefaction. It successfully enhanced the volatile matter emissions and exhibited an antagonistic effect on the solid yield. Different from the catalytic reaction that occurred during short retention time, the blocking effect was more noticeable with a longer duration, showing a synergistic effect on the solid yield. Alternatively, a significantly antagonistic effect was exerted on oxygen content, while the carbon content displayed a converse trend. This gave rise to a major antagonistic effect on the O/C ratio which was closer to coal for pure materials torrefaction. The other spotlight in this study was to reuse the tar as a heating value additive. After coating it onto the biochar, the higher heating value could be increased by up to 5.4%. Although tar is considered as an unwanted byproduct of torrefaction treatment, the presented data show its high potential to be recycled into useful calorific value enhancer. It also fulfills the scope of waste-to-energy in this study.
Please use this identifier to cite or link to this item: