Optimized Energy and Information Relaying in Self-Sustainable IRS-Empowered WPCN

Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Publication Type:
Journal Article
Citation:
IEEE Transactions on Communications, 2021, 69, (1), pp. 619-633
Issue Date:
2021-01-01
Full metadata record
This paper proposes a hybrid-relaying scheme empowered by a self-sustainable intelligent reflecting surface (IRS) in a wireless powered communication network (WPCN), to simultaneously improve the performance of downlink energy transfer (ET) from a hybrid access point (HAP) to multiple users and uplink information transmission (IT) from users to the HAP. We propose time-switching (TS) and power-splitting (PS) schemes for the IRS, where the IRS can harvest energy from the HAP's signals by switching between energy harvesting and signal reflection in the TS scheme or adjusting its reflection amplitude in the PS scheme. For both the TS and PS schemes, we formulate the sum-rate maximization problems by jointly optimizing the IRS's phase shifts for both ET and IT and network resource allocation. To address each problem's non-convexity, we propose a two-step algorithm to obtain the near-optimal solution with high accuracy. To show the structure of resource allocation, we also investigate the optimal solutions for the schemes with random phase shifts. Through numerical results, we show that our proposed schemes can achieve significant system sum-rate gain compared to the baseline scheme without IRS.
Please use this identifier to cite or link to this item: