Unveiling hidden implicit similarities for cross-domain recommendation

Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Journal Article
IEEE Transactions on Knowledge and Data Engineering, 2021, 33, (1), pp. 302-315
Issue Date:
Filename Description Size
Unveiling_Hidden_Implicit_Similarities_for_Cross-Domain_Recommendation.pdfPublished version1.91 MB
Adobe PDF
Full metadata record
E-commerce businesses are increasingly dependent on recommendation systems to introduce personalized services and products to targeted customers. Providing effective recommendations requires sufficient knowledge about user preferences and product (item) characteristics. Given the current abundance of available data across domains, achieving a thorough understanding of the relationship between users and items can bring in more collaborative filtering power and lead to a higher recommendation accuracy. However, how to effectively utilize different types of knowledge obtained across domains is still a challenging problem. In this paper, we propose to discover both explicit and implicit similarities from latent factors across domains based on matrix tri-factorization. In our research, common factors in a shared dimension (users or items) of two coupled matrices are discovered, while at the same time, domain-specific factors of the shared dimension are also preserved. We will show that such preservation of both common and domain-specific factors are significantly beneficial to cross-domain recommendations. Moreover, on the non-shared dimension, we propose to use the middle matrix of the tri-factorization to match the unique factors, and align the matched unique factors to transfer cross-domain implicit similarities and thus further improve the recommendation. This research is the first that proposes the transfer of knowledge across the non-shared (non-coupled) dimensions. Validated on real-world datasets, our approach outperforms existing algorithms by more than two times in terms of recommendation accuracy. These empirical results illustrate the potential of utilizing both explicit and implicit similarities for making across-domain recommendations.
Please use this identifier to cite or link to this item: