Sketch-Guided Scenery Image Outpainting

Publication Type:
Journal Article
IEEE Transactions on Image Processing, 2021, 30, pp. 2643-2655
Issue Date:
Filename Description Size
Sketch-Guided_Scenery_Image_Outpainting.pdfPublished version2.86 MB
Adobe PDF
Full metadata record
The outpainting results produced by existing approaches are often too random to meet users' requirements. In this work, we take the image outpainting one step forward by allowing users to harvest personal custom outpainting results using sketches as the guidance. To this end, we propose an encoder-decoder based network to conduct sketch-guided outpainting, where two alignment modules are adopted to impose the generated content to be realistic and consistent with the provided sketches. First, we apply a holistic alignment module to make the synthesized part be similar to the real one from the global view. Second, we reversely produce the sketches from the synthesized part and encourage them be consistent with the ground-truth ones using a sketch alignment module. In this way, the learned generator will be imposed to pay more attention to fine details and be sensitive to the guiding sketches. To our knowledge, this work is the first attempt to explore the challenging yet meaningful conditional scenery image outpainting. We conduct extensive experiments on two collected benchmarks to qualitatively and quantitatively validate the effectiveness of our approach compared with the other state-of-the-art generative models.
Please use this identifier to cite or link to this item: