Probabilistic Margins for Instance Reweighting in Adversarial Training

Publication Type:
Journal Article
Citation:
Advances in Neural Information Processing Systems, 2021, 34, pp. 1-12
Issue Date:
2021
Full metadata record
Reweighting adversarial data during training has been recently shown to improve adversarial robustness, where data closer to the current decision boundaries are regarded as more critical and given larger weights. However, existing methods measuring the closeness are not very reliable: they are discrete and can take only a few values, and they are path-dependent, i.e., they may change given the same start and end points with different attack paths. In this paper, we propose three types of probabilistic margin (PM), which are continuous and path-independent, for measuring the aforementioned closeness and reweighing adversarial data. Specifically, a PM is defined as the difference between two estimated class-posterior probabilities, e.g., such a probability of the true label minus the probability of the most confusing label given some natural data. Though different PMs capture different geometric properties, all three PMs share a negative correlation with the vulnerability of data: data with larger/smaller PMs are safer/riskier and should have smaller/larger weights. Experiments demonstrated that PMs are reliable and PM-based reweighting methods outperformed state-of-the-art counterparts.
Please use this identifier to cite or link to this item: