MC-MAC: a multi-channel based MAC scheme for interference mitigation in WBANs

Publisher:
SPRINGER
Publication Type:
Journal Article
Citation:
Wireless Networks, 2018, 24, (3), pp. 719-733
Issue Date:
2018-04-01
Filename Description Size
s11276-016-1366-0.pdfPublished version1.55 MB
Adobe PDF
Full metadata record
Wireless body area networks (WBANs) support the inter-operability of biomedical sensors and medical institutions with convenience and high-efficiency, which makes it an appropriate solution for the pervasive healthcare. Typically, WBANs comprise in-body or around-body sensor nodes for collecting data of physiological feature. Therefore, the efficient medium access control (MAC) protocol is a crucial paramount to coordinate these devices and forward data to the medical center in an efficient and reliable way. However, the extensive use of wireless channel and coexistence of WBANs may result in inevitable interference which will cause performance degradation. Besides, contention-based access in single channel in WBANs is less efficient for dense medical traffic on account of large packet delay, energy consumption and low priority starvation. To address these issues above, we propose a multi-channel MAC (MC-MAC) scheme to obtain better network performance. Considering the characteristic and emergency degree of medical traffic, we introduce a novel channel mapping and selection mechanism, cooperating with conflict avoidance strategy, to organize nodes to access available channels without collisions. In addition, we have evaluated the performance of MC-MAC and the standard IEEE 802.15.6 via simulation and hardware test. The test is conducted by hardware platform based on prototype system of WBANs. Both of the analysis and simulation results show that MC-MAC outperforms the IEEE 802.15.6 in terms of packet delay, throughput, packet error rate and frame error rate.
Please use this identifier to cite or link to this item: