Low-Cost and Confidentiality-Preserving Data Acquisition for Internet of Multimedia Things

Publication Type:
Journal Article
IEEE Internet of Things Journal, 2018, 5, (5), pp. 3442-3451
Issue Date:
Full metadata record
Internet of Multimedia Things (IoMT) faces the challenge of how to realize low-cost data acquisition while still preserve data confidentiality. In this paper, we present a low-cost and confidentiality-preserving data acquisition framework for IoMT. First, we harness chaotic convolution and random subsampling to capture multiple image signals. The measurement matrix is under the control of chaos, ensuring the security of the sampling process. Next, we assemble these sampled images into a big master image, and then encrypt this master image based on Arnold transform and single value diffusion. The computation of these two transforms only requires some low-complexity operations. Finally, the encrypted image is delivered to cloud servers for storage and decryption service. Experimental results demonstrate the security and effectiveness of the proposed framework.
Please use this identifier to cite or link to this item: