Effective Vehicle-Based Kangaroo Detection for Collision Warning Systems Using Region-Based Convolutional Networks.
- Publisher:
- MDPI
- Publication Type:
- Journal Article
- Citation:
- Sensors (Basel, Switzerland), 2018, 18, (6), pp. E1913
- Issue Date:
- 2018
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Traffic collisions between kangaroos and motorists are on the rise on Australian roads. According to a recent report, it was estimated that there were more than 20,000 kangaroo vehicle collisions that occurred only during the year 2015 in Australia. In this work, we are proposing a vehicle-based framework for kangaroo detection in urban and highway traffic environment that could be used for collision warning systems. Our proposed framework is based on region-based convolutional neural networks (RCNN). Given the scarcity of labeled data of kangaroos in traffic environments, we utilized our state-of-the-art data generation pipeline to generate 17,000 synthetic depth images of traffic scenes with kangaroo instances annotated in them. We trained our proposed RCNN-based framework on a subset of the generated synthetic depth images dataset. The proposed framework achieved a higher average precision (AP) score of 92% over all the testing synthetic depth image datasets. We compared our proposed framework against other baseline approaches and we outperformed it with more than 37% in AP score over all the testing datasets. Additionally, we evaluated the generalization performance of the proposed framework on real live data and we achieved a resilient detection accuracy without any further fine-tuning of our proposed RCNN-based framework.
Please use this identifier to cite or link to this item: