A two-tier system for web attack detection using linear discriminant method

Publication Type:
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6476 LNCS pp. 459 - 471
Issue Date:
Filename Description Size
Thumbnail2010000100OK.pdf658.51 kB
Adobe PDF
Full metadata record
Computational cost is one of the major concerns of the commercial Intrusion Detection Systems (IDSs). Although these systems are proven to be promising in detecting network attacks, they need to check all the signatures to identify a suspicious attack in the worst case. This is time consuming. This paper proposes an efficient two-tier IDS, which applies a statistical signature approach and a Linear Discriminant Method (LDM) for the detection of various Web-based attacks. The two-tier system converts high-dimensional feature space into a low-dimensional feature space. It is able to reduce the computational cost and integrates groups of signatures into an identical signature. The integration of signatures reduces the cost of attack identification. The final decision is made on the integrated low-dimensional feature space. Finally, the proposed two-tier system is evaluated using DARPA 1999 IDS dataset for webbased attack detection. © 2010 Springer-Verlag.
Please use this identifier to cite or link to this item: