Generalized Approximate Message Passing Equalization for Multi-Carrier Faster-Than-Nyquist Signaling

Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Publication Type:
Journal Article
Citation:
IEEE Transactions on Vehicular Technology, 2022, 71, (3), pp. 3309-3314
Issue Date:
2022-03-01
Full metadata record
Multi-carrier faster-than-Nyquist (MFTN) signaling constitutes a promising spectrally efficient non-orthogonal physical layer waveform. In this correspondence, we propose a pair of low-complexity generalized approximate message passing (GAMP)-based frequency-domain equalization (FDE) algorithms for MFTN systems operating in multipath channels. To mitigate the ill-condition of the resultant equivalent channel matrix, we construct block circulant interference matrices by inserting a few cyclic postfixes, followed by truncating the duration of the inherent two-dimensional interferences. Based on the decomposition of the block circulant matrices, we develop a novel frequency-domain received signal model using the two-dimensional fast Fourier transform for mitigating the colored noise imposed by the non-orthogonal matched filter. Moreover, we derive a GAMP-based FDE algorithm and its refined version, where the latter relies on approximations for circumventing the emergence of the ill-conditioned matrices. Our simulation results demonstrate that, for a fixed spectral efficiency, MFTN signaling can significantly improve the bit error rate (BER) performance by jointly optimizing the time- and frequency-domain packing factors. Compared to its Nyquist-signaling counterpart, our proposed MFTN systems employing the refined GAMP equalizer can achieve about 39% higher transmission rates at a negligible BER performance degradation.
Please use this identifier to cite or link to this item: