Zirconium hydroxide nanoparticle encapsulated magnetic biochar composite derived from rice residue: Application for As(III) and As(V) polluted water purification.

Publisher:
Elsevier BV
Publication Type:
Journal Article
Citation:
J Hazard Mater, 2022, 423, (Pt A), pp. 127081
Issue Date:
2022-02-05
Full metadata record
Finding a low-cost and suitable adsorbent is still in urgent need for efficient decontamination of As(III) and As(V) elements from the polluted waters. A novel zirconium hydroxide nanoparticle encapsulated magnetic biochar composite (ZBC) derived from rice residue was synthesized for the adsorptive capture of As(III) and As(V) from aqueous solutions. The results revealed that ZBC showed an acceptable magnet separation ability and its surface was encapsulated with lots of hydrous zirconium oxide nanoparticles. Compared to As(III), the adsorption of As(V) onto ZBC was mainly dependent on the pH of the solution. The intraparticle diffusion model described the adsorption process. ZBC showed satisfactory adsorption performances to As(III) and As(V) with the highest adsorption quantity of 107.6 mg/g and 40.8 mg/g at pH 6.5 and 8.5, respectively. The adsorption of As(III) and As(V) on ZBC was almost impervious with the ionic strength while the presence of coexisting ions, especially phosphate, significantly affected the adsorption process. The processes of complexation reaction and electrostatic attraction contributed to the adsorption of As(III) and As(V) onto ZBC. ZBC prepared from kitchen rice residue was found to be a low cost environmentally friendly promising adsorbent with high removal capacity for As(III) and As(V) and could be recycled easily from contaminated waters.
Please use this identifier to cite or link to this item: