Performance of a dual-chamber microbial fuel cell as a biosensor for in situ monitoring Bisphenol A in wastewater.

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Sci Total Environ, 2022, 845, pp. 157125
Issue Date:
2022-11-01
Full metadata record
This research explores the possibilities of a dual-chamber microbial fuel cell as a biosensor to measure Bisphenol A (BPA) in wastewater. BPA is an organic compound and is considered to be an endocrine disruptor, affecting exposed organisms, the environment, and human health. The performance of the microbial fuel cells (MFCs) was first controlled with specific operational conditions (pH, temperature, fuel feeding rate, and organic loading rate) to obtain the best accuracy of the sensor signal. After that, BPA concentrations varying from 50 to 1000 μg L-1 were examined under the biosensor's cell voltage generation. The outcome illustrates that MFC generates the most power under the best possible conditions of neutral pH, 300 mg L-1 of COD, R 1000 Ω, and ambient temperature. In general, adding BPA improved the biosensor's cell voltage generation. A slight linear trend between voltage output generation and BPA concentration was observed with R2 0.96, which indicated that BPA in this particular concentration range did not real harm to the MFC's electrogenic bacteria. Scanning electron microscope (SEM) images revealed a better cover biofilm after BPA injection on the surface electrode compared to it without BPA. These results confirmed that electroactive biofilm-based MFCs can serve to detect BPA found in wastewaters.
Please use this identifier to cite or link to this item: