Power-Dependent Optimal Concentrations of Tm3+ and Yb3+ in Upconversion Nanoparticles.

Publisher:
AMER CHEMICAL SOC
Publication Type:
Journal Article
Citation:
J Phys Chem Lett, 2022, 13, (23), pp. 5316-5323
Issue Date:
2022-06-08
Filename Description Size
acs.jpclett.2c01186.pdf5.56 MB
Adobe PDF
Full metadata record
Lanthanide-doped upconversion nanoparticles (UCNPs) have enabled a broad range of emerging nanophotonics and biophotonics applications. Here, we provide a quantitative guide to the optimum concentrations of Yb3+ sensitizer and Tm3+ emitter ions, highly dependent on the excitation power densities. To achieve this, we fabricate the inert-core@active-shell@inert-shell architecture to sandwich the same volume of the optically active section. Our results show that highly doped UCNPs enable an approximately 18-fold enhancement in brightness over that of conventional ones. Increasing the Tm3+ concentration improves the brightness by 6 times and increases the NIR/blue ratio by 11 times, while the increase of Yb3+ concentration enhances the brightness by 3 times and only slightly affects the NIR/blue ratio. Moreover, the optimal doping concentration of Tm3+ varies from 2% to 16%, which is highly dependent on the excitation power density ranging from 102 to 107 W/cm2. This work provides a guideline for designing bright UCNPs under different excitation conditions.
Please use this identifier to cite or link to this item: