A Numerical Methodology to Predict the Maximum Power Output of Tidal Stream Arrays

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
SUSTAINABILITY, 2022, 14, (3)
Issue Date:
2022-02-01
Full metadata record
Due to its high level of consistency and predictability, tidal stream energy is a feasible and promising type of renewable energy for future development and investment. Numerical modeling of tidal farms is a challenging task. Many studies have shown the applicability of the Blade Element Momentum (BEM) method for modeling the interaction of turbines in tidal arrays. Apart from its well-known capabilities, there is a scarcity of research using BEM to model tidal stream energy farms. Therefore, the main aim of this numerical study is to simulate a full-scale array in a real geographical position. A fundamental linear relationship to estimate the power capture of full-scale turbines using available kinetic energy flux is being explored. For this purpose, a real site for developing a tidal farm on the southern coasts of Iran is selected. Then, a numerical methodology is validated and calibrated for the established farm by analyzing an array of turbines. A linear equation is proposed to calculate the tidal power of marine hydrokinetic turbines. The results indicate that the difference between the predicted value and the actual power does not exceed 6%.
Please use this identifier to cite or link to this item: