Citrus disease detection and classification using end-to-end anchor-based deep learning model

Publisher:
SPRINGER
Publication Type:
Journal Article
Citation:
Applied Intelligence, 2022, 52, (1), pp. 927-938
Issue Date:
2022-01-01
Full metadata record
Plant diseases are the primary issue that reduces agricultural yield and production, causing significant economic losses and instability in the food supply. In plants, citrus is a fruit crop of great economic importance, produced and typically grown in about 140 countries. However, citrus cultivation is widely affected by various factors, including pests and diseases, resulted in significant yield and quality losses. In recent years, computer vision and machine learning have been widely used in plant disease detection and classification, which present opportunities for early disease detection and bring improvements in the field of agriculture. Early and accurate detection of plant diseases is crucial to reducing the disease’s spread and damage to the crop. Therefore, this paper employs a two-stage deep CNN model for plant disease detection and citrus diseases classification using leaf images. The proposed model consists of two main stages; (a) proposing the potential target diseased areas using a region proposal network; (b) classification of the most likely target area to the corresponding disease class using a classifier. The proposed model delivers 94.37% accuracy in detection and an average precision of 95.8%. The findings demonstrate that the proposed model identifies and distinguishes between the three different citrus diseases, namely citrus black spot, citrus bacterial canker and Huanglongbing. The proposed model serves as a useful decision support tool for growers and farmers to recognize and classify citrus diseases.
Please use this identifier to cite or link to this item: