Deep transfer learning enables lesion tracing of circulating tumor cells.
Guo, X
Lin, F
Yi, C
Song, J
Sun, D
Lin, L
Zhong, Z
Wu, Z
Wang, X
Zhang, Y
Li, J
Zhang, H
Liu, F
Yang, C
Song, J
- Publisher:
- Springer Nature
- Publication Type:
- Journal Article
- Citation:
- Nat Commun, 2022, 13, (1), pp. 7687
- Issue Date:
- 2022-12-12
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, X | |
dc.contributor.author | Lin, F | |
dc.contributor.author | Yi, C | |
dc.contributor.author | Song, J | |
dc.contributor.author | Sun, D | |
dc.contributor.author | Lin, L | |
dc.contributor.author | Zhong, Z | |
dc.contributor.author | Wu, Z | |
dc.contributor.author | Wang, X | |
dc.contributor.author | Zhang, Y | |
dc.contributor.author | Li, J | |
dc.contributor.author | Zhang, H | |
dc.contributor.author |
Liu, F |
|
dc.contributor.author | Yang, C | |
dc.contributor.author | Song, J | |
dc.date.accessioned | 2023-03-21T22:47:49Z | |
dc.date.available | 2022-11-28 | |
dc.date.available | 2023-03-21T22:47:49Z | |
dc.date.issued | 2022-12-12 | |
dc.identifier.citation | Nat Commun, 2022, 13, (1), pp. 7687 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10453/167987 | |
dc.description.abstract | Liquid biopsy offers great promise for noninvasive cancer diagnostics, while the lack of adequate target characterization and analysis hinders its wide application. Single-cell RNA sequencing (scRNA-seq) is a powerful technology for cell characterization. Integrating scRNA-seq into a CTC-focused liquid biopsy study can perhaps classify CTCs by their original lesions. However, the lack of CTC scRNA-seq data accumulation and prior knowledge hinders further development. Therefore, we design CTC-Tracer, a transfer learning-based algorithm, to correct the distributional shift between primary cancer cells and CTCs to transfer lesion labels from the primary cancer cell atlas to CTCs. The robustness and accuracy of CTC-Tracer are validated by 8 individual standard datasets. We apply CTC-Tracer on a complex dataset consisting of RNA-seq profiles of single CTCs, CTC clusters from a BRCA patient, and two xenografts, and demonstrate that CTC-Tracer has potential in knowledge transfer between different types of RNA-seq data of lesions and CTCs. | |
dc.format | Electronic | |
dc.language | eng | |
dc.publisher | Springer Nature | |
dc.relation.ispartof | Nat Commun | |
dc.relation.isbasedon | 10.1038/s41467-022-35296-0 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Neoplastic Cells, Circulating | |
dc.subject.mesh | Liquid Biopsy | |
dc.subject.mesh | Machine Learning | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Neoplastic Cells, Circulating | |
dc.subject.mesh | Machine Learning | |
dc.subject.mesh | Liquid Biopsy | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Neoplastic Cells, Circulating | |
dc.subject.mesh | Liquid Biopsy | |
dc.subject.mesh | Machine Learning | |
dc.title | Deep transfer learning enables lesion tracing of circulating tumor cells. | |
dc.type | Journal Article | |
utslib.citation.volume | 13 | |
utslib.location.activity | England | |
pubs.organisational-group | /University of Technology Sydney | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Engineering and Information Technology | |
utslib.copyright.status | open_access | * |
dc.date.updated | 2023-03-21T22:47:43Z | |
pubs.issue | 1 | |
pubs.publication-status | Published online | |
pubs.volume | 13 | |
utslib.citation.issue | 1 |
Abstract:
Liquid biopsy offers great promise for noninvasive cancer diagnostics, while the lack of adequate target characterization and analysis hinders its wide application. Single-cell RNA sequencing (scRNA-seq) is a powerful technology for cell characterization. Integrating scRNA-seq into a CTC-focused liquid biopsy study can perhaps classify CTCs by their original lesions. However, the lack of CTC scRNA-seq data accumulation and prior knowledge hinders further development. Therefore, we design CTC-Tracer, a transfer learning-based algorithm, to correct the distributional shift between primary cancer cells and CTCs to transfer lesion labels from the primary cancer cell atlas to CTCs. The robustness and accuracy of CTC-Tracer are validated by 8 individual standard datasets. We apply CTC-Tracer on a complex dataset consisting of RNA-seq profiles of single CTCs, CTC clusters from a BRCA patient, and two xenografts, and demonstrate that CTC-Tracer has potential in knowledge transfer between different types of RNA-seq data of lesions and CTCs.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph