Model-based evaluation of N<inf>2</inf>O recovery as an energy source in sulfur-driven NO-based autotrophic denitrification

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Chemical Engineering Journal, 2023, 453, pp. 139732
Issue Date:
2023-02-01
Filename Description Size
Model-based evaluation of N2O.pdf2.5 MB
Adobe PDF
Full metadata record
Instead of the conventional perception of nitrous oxide (N2O) as a potent greenhouse gas whose production should be minimized, this work aimed to assess N2O recovery as a potential energy source from nitric oxide (NO) in the form of Fe(II)EDTA-NO through element sulfur (S0) or thiosulfate (S2O32−)-driven NO-based autotrophic denitrification (SNADS0 or SNADS2O3). A mathematical model was proposed to describe substrate dynamics related to N2O production and reduction and was successfully calibrated and validated using batch experimental data from lab-scale SNADS0 and SNADS2O3 systems under different substrates conditions. The model was subsequently employed to assess the potential of N2O accumulation and recovery by altering the S/N mass ratio and the ratio of gas volume to liquid volume of the system. The simulation results suggested that with a S/N mass ratio of nearly 1.0, high-purity N2O could be more rapidly and efficiently recovered from Fe(II)EDTA-NO in the SNADS0 and SNADS2O3 systems with a higher ratio of gas volume to liquid volume (i.e., a N2O recovery efficiency of up to 80.2%−84.9% reached within 3.1 h−3.5 h under the studied conditions). Comparatively, the SNADS0 process showed an economic and viable advantage for practical applications to the efficient treatment and resource utilization of NO-containing flue gas.
Please use this identifier to cite or link to this item: