Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel

Publication Type:
Journal Article
Energy, 2022, 239
Issue Date:
Filename Description Size
1-s2.0-S0360544221022659-main.pdfPublished version3.96 MB
Adobe PDF
Full metadata record
The production of jet fuel from renewable source (i.e., biomass) has been improving since the past few years. In Malaysia, palm-based biomass is being widely studied for the production of transportation fuels due to its abundant supply. Hence, this study focused on the production of bio-jet fuel from different types of palm oil (e.g., palm-based waste cooking oil, palm olein, palm kernel oil) through deoxygenation process. Several types of deoxygenation catalysts (e.g., CaO, Zeolite, V2O5, Pd/C, TiO2) were selected to investigate the efficiency of jet fuel-based hydrocarbon production under condition of 400 °C for 2 h with different catalyst loading (e.g., 0 wt%, 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt% and 10 wt%). The physico-chemical properties of yielded liquid fuel were tested by using GC-MS analyses, as well as density, kinematic viscosity, cloud point, pour point, smoke point, flash point and final boiling point. The deoxygenation of PKO over Pd/C at 8 wt% yielded the highest molar concentration of 96% liquid product (e.g., n-paraffins, isoparaffins, olefins, naphthenes, aromatic) and 73% of jet paraffins selectivity (C8–C16) under 400 °C for 2 h. In addition, the physicochemical properties of palm-based liquid fuel are complied with standard Jet A-1 fuel, in accordance to ASTM standards. The low temperature fluidity, combustion characteristics, and fuel volatility of this liquid product were comparable to Jet A-1 fuel.
Please use this identifier to cite or link to this item: