Numerical Assessment of Impacts of Vibrating Roller Characteristics on Acceleration Response of Drum Used for Intelligent Compaction

Publisher:
SPRINGER-VERLAG SINGAPORE PTE LTD
Publication Type:
Conference Proceeding
Citation:
Lecture Notes in Civil Engineering, 2022, 166, pp. 231-245
Issue Date:
2022-01-01
Full metadata record
Intelligent compaction (IC) is an emerging technology for efficient and optimized ground compaction. IC combines the roller-integrated measurements with the Global Positioning System (GPS), which performs the real-time quality control and assurance during the compaction work. Indeed, IC technology is proven to be capable of providing a detailed control system for compaction process with real-time feedback and adjustment on full-area of compaction. Although roller manufacturers offer typical recommended settings for rollers in various soils, there are still some areas needing further improvement, particularly on the selection of vibration frequency and amplitude of the roller in soils experiencing significant nonlinearity and plasticity during compaction. In this paper, the interaction between the road subgrade and the vibrating roller is simulated, using the three-dimensional finite element method capturing the dynamic responses of the soil and the roller. The developed numerical model is able to simulate the nonlinear behavior of soil subjected to dynamic loading, particularly variations of soil stiffness and damping with the cyclic shear strain induced by the applied load. In this study, the dynamic load of the roller is explicitly applied to the simulated cylindrical roller drum. Besides, the impact of the frequency and amplitude on the level of subgrade compaction is discussed based on the detailed numerical analysis. The adopted constitutive model allows to assess the progressive settlement of ground subjected to cyclic loading. The results based on the numerical modeling reveal that the roller vibration characteristics can impact the influence depth as well as the level of soil compaction and its variations with depth. The results of this study can be used as a potential guidance by practicing engineers and construction teams on selecting the best choice of roller vibration frequency and amplitude to achieve high-quality compaction.
Please use this identifier to cite or link to this item: