Nonlinear dynamic investigation of the perovskite solar cell with GPLR-FGP stiffeners under blast impact

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
International Journal of Mechanical Sciences, 2022, 213, pp. 106866
Issue Date:
2022-01-01
Full metadata record
The perovskite solar cell (PSC), as a potential disruptive space market entrant, has fascinated both the scientific community and aerospace industry due to the high specific power, flexibility, and low fabrication cost. With the aim of reducing structure weight while strengthening the blast-carrying capacity of the PSC, the novel graphene platelets (GPL) reinforced functionally graded porous (GPLR-FGP) stiffeners have been incorporated as enhancements against impact. This research explores the nonlinear dynamic characteristics of the PSC with GPLR-FGP stiffeners under blast load. Integrating the von-Kármán geometric nonlinearity and the first-order shear deformation theory, the governing motion equations are derived by utilizing Airy's stress function and the Galerkin method. The fourth-order Runge-Kutta approach is employed to capture the solutions of dynamic equations effectively. Diverse influences of the stiffener material, boundary condition, plate theory, porosity distribution, GPL dispersion, porosity coefficient, GPL weight fraction, GPL geometry, damping, nonlinear elastic foundation, and initial imperfection are investigated in the numerical study. Besides, the optimal parameters of the PSC with GPLR-FGP stiffeners are discovered, facilitating the following paces of space design and practical implementation in extraterrestrial circumstances.
Please use this identifier to cite or link to this item: