Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties

Publisher:
ELSEVIER SCI LTD
Publication Type:
Journal Article
Citation:
Applied Energy, 2022, 306
Issue Date:
2022-01-15
Full metadata record
Cyber-physical attacks and parameter uncertainties are becoming a compelling issue on load frequency control, directly affecting the resilience (i.e., reliability plus security) of the microgrid and multi-microgrid systems enabled by internet of things and the fifth generation communication system. A resilient system aims to endure and quickly restore a system's transients during extreme events. Therefore, it is critically important to have a resilient system to evade the total system failure or blackout in order to make them attack-resilient. With this objective, this paper presents a resilience-based frequency regulation scheme in a microgrid under different operating conditions, such as, step and random change in load and different wind speed patterns. Furthermore, a cyber-attack model is considered in the problem formulation to make the system robust against external attacks. To protect against the cyber-attack and parameter uncertainties in the system, different control schemes are employed, and their robustness characteristics are compared through various performance indices. Besides, the proposed control schemes are validated through a real-time software synchronisation environment, i.e., OPAL-RT. As noted, the proposed type-2 fuzzy proportional-integral-derivative based controller provides the most significant improvement in the dynamic performance for frequency regulation compared to that of the others under the cyber-attack and uncertainties.
Please use this identifier to cite or link to this item: