OffDQ: An Offline Deep Learning Framework for QoS Prediction

Publisher:
ASSOC COMPUTING MACHINERY
Publication Type:
Conference Proceeding
Citation:
WWW 2022 - Proceedings of the ACM Web Conference 2022, 2022, pp. 1987-1996
Issue Date:
2022-04-25
Filename Description Size
offDQ.pdfPublished version951.91 kB
Adobe PDF
Full metadata record
With the increasing trend of web services over the Internet, developing a robust Quality of Service (QoS) prediction algorithm for recommending services in real-time is becoming a challenge today. Designing an efficient QoS prediction algorithm achieving high accuracy, while supporting faster prediction to enable the algorithm to be integrated into a real-time system, is one of the primary focuses in the domain of Services Computing. The major state-of-the-art QoS prediction methods are yet to efficiently meet both criteria simultaneously, possibly due to the lack of analysis of challenges involved in designing the prediction algorithm. In this paper, we systematically analyze the various challenges associated with the QoS prediction algorithm and propose solution strategies to overcome the challenges, and thereby propose a novel offline framework using deep neural architectures for QoS prediction to achieve our goals. Our framework, on the one hand, handles the sparsity of the dataset, captures the non-linear relationship among data, figures out the correlation between users and services to achieve desirable prediction accuracy. On the other hand, our framework being an offline prediction strategy enables faster responsiveness. We performed extensive experiments on the publicly available WS-DREAM dataset to show the trade-off between prediction performance and prediction time. Furthermore, we observed our framework significantly improved one of the parameters (prediction accuracy or responsiveness) without considerably compromising the other as compared to the state-of-the-art methods.
Please use this identifier to cite or link to this item: