Sulfite pretreatment enhances the medium-chain fatty acids production from waste activated sludge anaerobic fermentation.

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Sci Total Environ, 2023, 871, pp. 162080
Issue Date:
2023-05-01
Filename Description Size
MCFA_finalV1.pdfAccepted version823.06 kB
Adobe PDF
Full metadata record
Production of high-value medium chain fatty acids (MCFAs) from anaerobic fermentation of waste activated sludge (WAS) has been considered as a promising alternative for renewable energy resources. However, the low biodegradability of WAS greatly limits the anaerobic fermentation performance. This study proposed and demonstrated a novel approach, sulfite pretreatment, to efficiently produce MCFAs through anaerobic fermentation of WAS. Pretreatment of WAS at a sulfite concentration of 100-500 mg S/L for 24 h effectively improved the MCFAs production and MCFAs selectivity and the promotion effect was positively correlated with the sulfite concentration used in pretreatment (Pearson's R > 0.9). The maximum MCFAs production of 6.84 g COD/L and MCFAs selectivity of 39.1 % were both achieved under 500 mg S/L sulfite pretreatment, which accounts for 2.6 times and 2.4 times of the control, respectively (MCFAs production of 2.62 g COD/L and MCFAs selectivity of 16.4 % in the control). Sulfite pretreatment also enhanced the WAS degradation from 25 ± 2 % in the control to a maximum of 39 ± 2 % under 500 mg S/L sulfite pretreatment. The electron transfer efficiency and COD flows from the substrate to products were enhanced by up to 25 % due to the sulfite pretreatment, which supports the enhanced WAS degradation. Sulfite pretreatment also promoted the solubilization, hydrolysis, and acidification processes during the anaerobic fermentation by up to 200 %, 60 %, and 45 %, respectively, which subsequently makes more substrates available for MCFAs production. The findings from this study provide a potential solution of using industrial sulfite-laden wastes for WAS pretreatment, to enhance the MCFAs production at a minimized cost.
Please use this identifier to cite or link to this item: