Towards Low-Cost Classification for Novel Fine-Grained Datasets

Publication Type:
Journal Article
Electronics, 2022, 11, (17), pp. 1-13
Issue Date:
Filename Description Size
electronics-11-02701.pdfPublished version5.5 MB
Adobe PDF
Full metadata record
Fine-grained categorization is an essential field in classification, a subfield of object recognition that aims to differentiate subordinate classes. Fine-grained image classification concentrates on distinguishing between similar, hard-to-differentiate types or species, for example, flowers, birds, or specific animals such as dogs or cats, and identifying airplane makes or models. An important step towards fine-grained classification is the acquisition of datasets and baselines; hence, we propose a holistic system and two novel datasets, including reef fish and butterflies, for fine-grained classification. The butterflies and fish can be imaged at various locations in the image plane; thus, causing image variations due to translation, rotation, and deformation in multiple directions can induce variations, and depending on the image acquisition device’s position, scales can be different. We evaluate the traditional algorithms based on quantized rotation and scale-invariant local image features and the convolutional neural networks (CNN) using their pre-trained models to extract features. The comprehensive evaluation shows that the CNN features calculated using the pre-trained models outperform the rest of the image representations. The proposed system can prove instrumental for various purposes, such as education, conservation, and scientific research. The codes, models, and dataset are publicly available.
Please use this identifier to cite or link to this item: