BiblioEngine: An AI-Empowered Platform for Disease Genetic Knowledge Mining

Publisher:
Springer Nature
Publication Type:
Conference Proceeding
Citation:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14305 LNCS, pp. 187-198
Issue Date:
2023-01-01
Filename Description Size
978-981-99-7108-4_16.pdf3.48 MB
Adobe PDF
Full metadata record
Recent decades have seen significant advancements in contemporary genetic research with the aid of artificial intelligence (AI) techniques. However, researchers lack a comprehensive platform for fully exploiting these AI tools and conducting customized analyses. This paper introduces BiblioEngine, a literature analysis platform that helps researchers profile the research landscape and gain genetic insights into diseases. BiblioEngine integrates multiple AI-empowered data sources and employs heterogeneous network analysis to identify and emphasize genes and other biomedical entities for further investigation. Its effectiveness is demonstrated through a case study on stroke-related genetic research. Analysis with BiblioEngine uncovers valuable research intelligence and genetic insights. It provides a profile of leading research institutions and the knowledge landscape in the field. The gene co-occurrence map reveals frequent research of NOTCH3, prothrombotic factors, inflammatory cytokines, and other potential risk factors. The heterogeneous biomedical entity network analysis highlights infrequently studied genes and biomedical entities with potential significance for future stroke studies. In conclusion, BiblioEngine is a valuable tool enabling efficient navigation and comprehension of expanding biomedical knowledge from scientific literature, empowering researchers in their pursuit of disease-specific genetic knowledge.
Please use this identifier to cite or link to this item: