Incremental Tensor Analysis: Theory and Applications

Association for Computing Machinery, Inc.
Publication Type:
Journal article
Sun Jimeng et al. 2008, 'Incremental Tensor Analysis: Theory and Applications', Association for Computing Machinery, Inc., vol. 2, no. 3, pp. 11:1-11:37.
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2011001556OK.pdf1.84 MB
Adobe PDF
How do we find patterns in author-keyword associations, evolving over time? Or in data cubes (tensors), with product-branchcustomer sales information? And more generally, how to summarize high-order data cubes (tensors)? How to incrementally update these patterns over time? Matrix decompositions, like principal component analysis (PCA) and variants, are invaluable tools for mining, dimensionality reduction, feature selection, rule identification in numerous settings like streaming data, text, graphs, social networks, and many more settings. However, they have only two orders (i.e., matrices, like author and keyword in the previous example). We propose to envision such higher-order data as tensors, and tap the vast literature on the topic. However, these methods do not necessarily scale up, let alone operate on semi-infinite streams. Thus, we introduce a general framework, incremental tensor analysis (ITA), which efficiently computes a compact summary for high-order and high-dimensional data, and also reveals the hidden correlations. Three variants of ITA are presented: (1) dynamic tensor analysis (DTA); (2) streaming tensor analysis (STA); and (3) window-based tensor analysis (WTA). In paricular, we explore several fundamental design trade-offs such as space efficiency, computational cost, approximation accuracy, time dependency, and model complexity.
Please use this identifier to cite or link to this item: