Real-Time Ratiometric Optical Nanoscale Thermometry.

Publisher:
AMER CHEMICAL SOC
Publication Type:
Journal Article
Citation:
ACS Nano, 2023, 17, (3), pp. 2725-2736
Issue Date:
2023-02-14
Full metadata record
All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 × 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.
Please use this identifier to cite or link to this item: