Bifunctional Hole-Transport Materials with Modification and Passivation Effect for High-Performance Inverted Perovskite Solar Cells.

Publisher:
AMER CHEMICAL SOC
Publication Type:
Journal Article
Citation:
ACS Appl Mater Interfaces, 2023, 15, (18), pp. 22752-22761
Issue Date:
2023-05-10
Full metadata record
Hole-transport materials (HTMs) play an important role in perovskite solar cells (PSCs) to enhance the power conversion efficiency (PCE). The innovation of HTMs can increase the hole extraction ability and reduce interfacial recombination. Three organic small molecule HTMs with 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) as the central unit was designed and synthesized, namely, CPDTE-MTP (with the 2-ethylhexyl substituent and diphenylamine derivative end-group), CPDT-MTP (with the hexyl substituent and diphenylamine derivative end-group), and CPDT-PMTP (with the hexyl substituent and triphenylamine derivative end-group), which can form bifunctional and robust hole transport layer (HTL) on ITO and is tolerable to subsequent solvent and thermal processing. The X-ray photoelectron spectroscopy (XPS) results proved that CPDT-based HTMs can both interact with ITO through the nitrogen element in them and the tin element in ITO and passivate the upper perovskite layer. It is worth noting that the champion efficiency of MAPbI3 PSCs based on CPDT-PMTP achieved 20.77%, with an open circuit voltage (VOC) of 1.10 V, a short-circuit current (JSC) of 23.39 mA cm-2, and a fill factor (FF) of 80.83%, as three new materials were introduced into p-i-n PSCs as dopant-free HTMs.
Please use this identifier to cite or link to this item: