AMT-CDR: A Deep Adversarial Multi-channel Transfer Network for Cross-domain Recommendation

Publisher:
Association for Computing Machinery (ACM)
Publication Type:
Journal Article
Citation:
ACM Transactions on Intelligent Systems and Technology
Filename Description Size
3641286.pdfPublished version1.57 MB
Adobe PDF
Full metadata record
Recommender systems are one of the most successful applications of using AI for providing personalized e-services to customers. However, data sparsity is presenting enormous challenges that are hindering the further development of advanced recommender systems. Although cross-domain recommendation partly overcomes data sparsity by transferring knowledge from a source domain with relatively dense data to augment data in the target domain, the current methods do not handle heterogeneous data very well. For example, using today’s cross-domain transfer learning schemes with data comprising clicks, ratings, user reviews, item meta data, and knowledge graphs will likely result in a poorly-performing model. User preferences will not be comprehensively profiled, and accurate recommendations will not be generated. To solve these three challenges – i.e., handling heterogeneous data, avoiding negative transfer, and dealing with data sparsity – we designed a new end-to-end deep a dversarial m ulti-channel t ransfer network for c ross- d omain r ecommendation named AMT-CDR. Heterogeneous data is handled by constructing a cross-domain graph based on real-world knowledge graphs – we used Freebase and YAGO. Negative transfer is prevented through an adversarial learning strategy that maintains consistency across the different data channels. And data sparsity is addressed with an end-to-end neural network that considers data across multiple channels and generates accurate recommendations by leveraging knowledge from both the source and target domains. Extensive experiments on three dual-target cross-domain recommendation tasks demonstrate the superiority of AMT-CDR compared to eight state-of-the-art methods. All source code is available at https://github.com/bjtu-lucas-nlp/AMT-CDR.
Please use this identifier to cite or link to this item: