Migrating federated learning to centralized learning with the leverage of unlabeled data

Publisher:
Springer Nature
Publication Type:
Journal Article
Citation:
Knowledge and Information Systems, 2023, 65, (9), pp. 3725-3752
Issue Date:
2023-09-01
Filename Description Size
Migrating federated learning.pdfPublished version5.64 MB
Adobe PDF
Full metadata record
Federated learning carries out cooperative training without local data sharing; the obtained global model performs generally better than independent local models. Benefiting from the free data sharing, federated learning preserves the privacy of local users. However, the performance of the global model might be degraded if diverse clients hold non-IID training data. This is because the different distributions of local data lead to weight divergence of local models. In this paper, we introduce a novel teacher–student framework to alleviate the negative impact of non-IID data. On the one hand, we maintain the advantage of the federated learning on the privacy-preserving, and on the other hand, we take the advantage of the centralized learning on the accuracy. We use unlabeled data and global models as teachers to generate a pseudo-labeled dataset, which can significantly improve the performance of the global model. At the same time, the global model as a teacher provides more accurate pseudo-labels. In addition, we perform a model rollback to mitigate the impact of latent noise labels and data imbalance in the pseudo-labeled dataset. Extensive experiments have verified that our teacher ensemble performs a more robust training. The empirical study verifies that the reliance on the centralized pseudo-labeled data enables the global model almost immune to non-IID data.
Please use this identifier to cite or link to this item: