Medical Question Summarization with Entity-driven Contrastive Learning

Publisher:
Association for Computing Machinery (ACM)
Publication Type:
Journal Article
Citation:
ACM Transactions on Asian and Low-Resource Language Information Processing
Filename Description Size
77. Medical QA. ACM Trans.pdfAccepted version768.2 kB
Adobe PDF
Full metadata record
By summarizing longer consumer health questions into shorter and essential ones, medical question-answering systems can more accurately understand consumer intentions and retrieve suitable answers. However, medical question summarization is very challenging due to obvious distinctions in health trouble descriptions from patients and doctors. Although deep learning has been applied to successfully address the medical question summarization (MQS) task, two challenges remain: how to correctly capture question focus to model its semantic intention, and how to obtain reliable datasets to fairly evaluate performance. To address these challenges, this paper proposes a novel medical question summarization framework based on e ntity-driven c ontrastive l earning (ECL). ECL employs medical entities present in frequently asked questions (FAQs) as focuses and devises an effective mechanism to generate hard negative samples. This approach compels models to focus on essential information and consequently generate more accurate question summaries. Furthermore, we have discovered that some MQS datasets, such as the iCliniq dataset with a 33% duplicate rate, have significant data leakage issues. To ensure an impartial evaluation of the related methods, this paper carefully examines leaked samples to reorganize more reasonable datasets. Extensive experiments demonstrate that our ECL method outperforms the existing methods and achieves new state-of-the-art performance, i.e., 52.85, 43.16, 41.31, 43.52 in terms of ROUGE-1 metric on MeQSum, CHQ-Summ, iCliniq, HealthCareMagic dataset, respectively. The code and datasets are available at https://github.com/yrbobo/MQS-ECL.
Please use this identifier to cite or link to this item: