Integral waterproof concrete: A comprehensive review

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Journal of Building Engineering, 2023, 78, pp. 107718
Issue Date:
2023-11-01
Full metadata record
The ingress of water and aggressive substances is the primary reason for the chemical and physical degradation of concrete infrastructure, leading to a reduction in durability and a shortening of life span. In practice, different integral waterproofing admixtures and surface coatings have been widely used to prevent or mitigate this problem. Compared with surface protection, the incorporation of integral waterproofing admixtures (such as densifiers, water repellents, and crystalline admixtures) in concrete has several benefits, such as ease of application, elimination of regular maintenance, and little or no deterioration over time. So far, there is no comprehensive review on integral waterproofing admixtures and their effects on various properties of concrete. This review examines existing literature on integral waterproof concrete containing various commercial and laboratory-made waterproofing admixtures. This comprehensive review highlights that the use of integral waterproofing admixtures has the potential to increase the service life and improve the durability of concrete structures and infrastructure. However, the admixtures may have a negative impact on some concrete properties, such as workability and strength. Whilst many hydrophobic and crystalline admixtures can reduce the water absorption rate of concrete by up to 80%, they often have a negative impact on the concrete compressive strength, causing a strength reduction of about 10% or more. Their influence on some durability properties (e.g., reinforcement corrosion, microbial-induced concrete corrosion) is inconclusive, indicating the need for further research. There is also a need to develop proper guidelines to determine the efficacy of integral waterproofing admixtures. More research is also required to assess the long-term performance of integral waterproof concrete and its benefits based on life cycle assessment.
Please use this identifier to cite or link to this item: