Domain Decorrelation with Potential Energy Ranking

Publisher:
Association for the Advancement of Artificial Intelligence (AAAI)
Publication Type:
Conference Proceeding
Citation:
Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 2023, 37, (2), pp. 2020-2028
Issue Date:
2023-06-27
Filename Description Size
25294-Article Text-29357-1-2-20230626.pdfPublished version8.42 MB
Adobe PDF
Full metadata record
Machine learning systems, especially the methods based on deep learning, enjoy great success in modern computer vision tasks under ideal experimental settings. Generally, these classic deep learning methods are built on the i.i.d. assumption, supposing the training and test data are drawn from the same distribution independently and identically. However, the aforementioned i.i.d. assumption is, in general, unavailable in the real-world scenarios, and as a result, leads to sharp performance decay of deep learning algorithms. Behind this, domain shift is one of the primary factors to be blamed. In order to tackle this problem, we propose using Potential Energy Ranking (PoER) to decouple the object feature and the domain feature in given images, promoting the learning of label-discriminative representations while filtering out the irrelevant correlations between the objects and the background. PoER employs the ranking loss in shallow layers to make features with identical category and domain labels close to each other and vice versa. This makes the neural networks aware of both objects and background characteristics, which is vital for generating domain-invariant features. Subsequently, with the stacked convolutional blocks, PoER further uses the contrastive loss to make features within the same categories distribute densely no matter domains, filtering out the domain information progressively for feature alignment. PoER reports superior performance on domain generalization benchmarks, improving the average top-1 accuracy by at least 1.20% compared to the existing methods. Moreover, we use PoER in the ECCV 2022 NICO Challenge, achieving top place with only a vanilla ResNet-18 and winning the jury award. The code has been made publicly available at: https://github.com/ForeverPs/PoER.
Please use this identifier to cite or link to this item: