Strength Model for Debonding Failure in RC Beams Flexurally Strengthened with NSM FRP and Anchored with FRP U-Jackets

Publisher:
American Society of Civil Engineers (ASCE)
Publication Type:
Journal Article
Citation:
Journal of Composites for Construction, 2023, 27, (5), pp. 04023038
Issue Date:
2023-10-01
Full metadata record
The flexural performance of reinforced concrete (RC) beams could be effectively improved by applying a near-surface mounted (NSM) fiber-reinforced polymer (FRP) at the beam soffit. However, such NSM FRP flexurally-strengthened beams frequently failed due to FRP debonding, which limited the full utilization of the FRP strength. In some experimental studies, FRP U-jackets have been used as the anchorage to mitigate or prevent debonding failures in NSM FRP flexurally-strengthened beams. These studies showed excellent anchoring performance of the FRP U-jackets. The authors recently developed a finite-element (FE) approach that could accurately predict the behavior of RC beams that had been flexurally strengthened with NSM FRP (NSM-strengthened beams), which were anchored with FRP U-jackets. Based on a parametric study that was undertaken, which used the simplified version of the FE approach, this paper proposed a strength model for the most common debonding failure mode in NSM-strengthened beams with FRP U-jackets. The proposed strength model consisted of an equation for the maximum NSM FRP strain (Ef) at debonding failure. Once the maximum FRP strain was known, the load-carrying capacity of the strengthened beam could be obtained through a section analysis. Comparing the predictions made by the proposed strength model with the test results showed that the proposed strength model could provide close predictions.
Please use this identifier to cite or link to this item: