Fuzzy Machine Learning: A Comprehensive Framework and Systematic Review

Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Publication Type:
Journal Article
Citation:
IEEE Transactions on Fuzzy Systems, 2024, 32, (7), pp. 3861-3878
Issue Date:
2024-01-01
Full metadata record
Machine learning draws its power from various disciplines, including computer science, cognitive science, and statistics. Although machine learning has achieved great advancements in both theory and practice, its methods have some limitations when dealing with complex situations and highly uncertain environments. Insufficient data, imprecise observations, and ambiguous information/relationships can all confound traditional machine learning systems. To address these problems, researchers have integrated machine learning from different aspects and fuzzy techniques, including fuzzy sets, fuzzy systems, fuzzy logic, fuzzy measures, fuzzy relations, and so on. This article presents a systematic review of fuzzy machine learning, from theory, approach to application, with the overall objective of providing an overview of recent achievements in the field of fuzzy machine learning. To this end, the concepts and frameworks discussed are divided into five categories: 1) fuzzy classical machine learning; 2) fuzzy transfer learning; 3) fuzzy data stream learning; 4) fuzzy reinforcement learning; and 5) fuzzy recommender systems. The literature presented should provide researchers with a solid understanding of the current progress in fuzzy machine learning research and its applications.
Please use this identifier to cite or link to this item: