DSLAM: Decoupled Localization and Mapping for Autonomous Robots

Publisher:
Springer
Publication Type:
Conference Proceeding
Citation:
Robotics Research: Springer tracts in Advanced Robotics Vol 28 - 2005 International Symposium of Robotics Research Proceedings, 2007, 28 pp. 203 - 213
Issue Date:
2007-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2005002378.pdf472.77 kB
Adobe PDF
The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM can be decoupled into solving a non-linear static estimation problem for mapping and a low-dimensional dynamic estimation problem for localization. The mapping problem can be solved using an Extended Information Filter where the information matrix is shown to be exactly sparse. A significant saving in the computational effort can be achieved for large scale problems by exploiting the special properties of sparse matrices. An important feature of D-SLAM is that the correlation among landmarks are still kept and it is demonstrated that the uncertainty of the map landmarks monotonically decrease. The algorithm is illustrated through computer simulations and experiments.
Please use this identifier to cite or link to this item: