Zernike-moment-based image super resolution

Publication Type:
Journal Article
IEEE Transactions on Image Processing, 2011, 20 (10), pp. 2738 - 2747
Issue Date:
Filename Description Size
Thumbnail2011001773OK.pdf519.44 kB
Adobe PDF
Full metadata record
Multiframe super-resolution (SR) reconstruction aims to produce a high-resolution (HR) image using a set of low-resolution (LR) images. In the process of reconstruction, fuzzy registration usually plays a critical role. It mainly focuses on the correlation between pixels of the candidate and the reference images to reconstruct each pixel by averaging all its neighboring pixels. Therefore, the fuzzy-registration-based SR performs well and has been widely applied in practice. However, if some objects appear or disappear among LR images or different angle rotations exist among them, the correlation between corresponding pixels becomes weak. Thus, it will be difficult to use LR images effectively in the process of SR reconstruction. Moreover, if the LR images are noised, the reconstruction quality will be affected seriously. To address or at least reduce these problems, this paper presents a novel SR method based on the Zernike moment, to make the most of possible details in each LR image for high-quality SR reconstruction. Experimental results show that the proposed method outperforms existing methods in terms of robustness and visual effects. © 2011 IEEE.
Please use this identifier to cite or link to this item: