Control of gear shifts in dual clutch transmission powertrains

Publication Type:
Journal Article
Mechanical Systems and Signal Processing, 2011, 25 (6), pp. 1923 - 1936
Issue Date:
Full metadata record
To achieve the best possible responses during shifting in dual clutch transmissions it is commonplace to integrate clutch and engine control, while the clutch is used to match speeds between the engine and wheels via reduction gears, poor engine control can lead to extended engagement times and rough/harsh shift transients. This paper proposes a method for combined speed and torque control of vehicle powertrains with dual clutch transmissions for both the engine and clutches. The vehicle powertrain is modelled as a simple four degree of freedom system with reduction gears and two clutches. Including a detailed clutch hydraulic model, comprising of the direct acting solenoids and clutch piston with the hydraulic fluid modelled as a compressible fluid. Powertrain control is realised through control of clutch solenoids and manipulation of the engine throttle input. Sensitivity study of clutch performance evaluating inaccurate torque estimation demonstrated variance in the response of the hydraulic system, with an indicative simulation of poor estimation resulting in increased powertrain vibration during and after shifting. Simulations are conducted to demonstrate the capacity for this method of engine and clutch control to further reduce shift transients developed in dual clutch transmission powertrains. The obtained results also show that the adoption of torque based control techniques for both the clutch and engine, which makes use of the estimated target clutch torque, significantly improves the powertrain response as a result of reduction in the lockup discontinuities. © 2010 Elsevier Ltd. All rights reserved.
Please use this identifier to cite or link to this item: